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Background: Recent deep learning models have shown remarkable accuracy for the diagnostic classification.
However, they have limitations in clinical application due to the gap between the training cohorts and real-
world data. We aimed to develop a model trained only by normal brain PET data with an unsupervised manner
to identify an abnormality in various disorders as imaging data of the clinical routine.
Methods: Using variational autoencoder, a type of unsupervised learning, Abnormality Score was defined as how
far a given brain image is from the normal data. The model was applied to FDG PET data of Alzheimer's disease
(AD) andmild cognitive impairment (MCI) and clinical routine FDG PET data for assessing behavioral abnormal-
ity and seizures. Accuracy was measured by the area under curve (AUC) of receiver-operating-characteristic
(ROC) curve. We investigated whether deep learning has additional benefits with experts' visual interpretation
to identify abnormal patterns.
Findings: The AUC of the ROC curve for differentiating ADwas 0.90. The changes in cognitive scores from baseline
to 2-year follow-up were significantly correlated with Abnormality Score at baseline. The AUC of the ROC curve
for discriminating patients with various disorders from controls was 0.74. Experts' visual interpretation was
helped by the deep learning model to identify abnormal patterns in 60% of cases initially not identified without
the model.
Interpretation: We suggest that deep learning model trained only by normal data was applicable for identifying
wide-range of abnormalities in brain diseases, even uncommon ones, proposing its possible use for interpreting
real-world clinical data.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent advances in deep learning have been rapidly applied tomed-
ical fields as it has great advantages in processing high-dimensional
data by capturing meaningful discriminative features [1]. Deep
learning-based models have been successfully developed for medical
image recognition tasks including diagnosis of dermatologic disorders
icine, Seoul National University
public of Korea.
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and diabetic retinopathy [2,3]. So far, a few deep learning-basedmodels
have been applied to the diagnosis of brain disorders such as
Alzheimer's disease (AD), Parkinson's disease and psychiatric disorders
[4–7]. Even though these models have recorded high accuracy for dis-
criminating brain disorders from normal controls, their clinical applica-
tion has not yet been established due to several reasons. One of the
critical limitations in the current deep learning-based diagnosticmodels
is that it can be only applied to data similar to a training set as most
models rely on supervised learning, while brain images are clinically ac-
quired for patients with various disorders without any prior grouping
and its characterization [8]. For example, a deep learningmodel trained
by a cohort composed of AD patients and controlswith supervisedman-
ner could hardly be applied to patients with a cognitive decline in gen-
eral population as it includes other types of dementia as well as AD.
Moreover, the deep learning model based on supervised training
which has successfully differentiated characteristic groups of patients
from normal has limitations when applied to the diagnosis of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Amajor application of recent deep learning models has been a dif-
ferential diagnostic classification based on supervised learning. In
spite of the remarkable performance, most models based on the
supervised learning have limitations in real data as data distribu-
tion in a real clinic could be different from the training cohort and
include uncommon disorders, which could not be considered for
the training.Wedevelop a deep learningmodel trained only bynor-
mal brain PET data to identify the abnormality in various brain dis-
orders. We propose the model that can detect abnormal patterns
in a variety of diseases with heterogeneous distribution expecting
the application to the clinical practice.

Added value of this study

This is the first study to use unsupervised learning to identify ab-
normal patterns in brain image data. We suggest the Abnormality
Score, which reflects how far a given brain PET data is from the
normal data, to define abnormal patterns. The Abnormality
Score could differentiate FDG PET of Alzheimer's disease from
normal. Moreover, the score at the baseline in mild cognitive im-
pairment patients was correlated with future cognitive decline.
We applied this model to the FDG PET data as a clinical routine,
which included relatively uncommon disorders. It successfully
identified abnormal patterns, some of which had not been initially
identified by experts. Moreover, experts' visual interpretation
could be aided by this model.

Implications of all the available evidence

Our approach could be used for the identification of metabolic ab-
normality in brain FDG PET in various types of disorders. The Ab-
normality Score may be used as a quantitative marker for
predicting outcomes and measuring disease severity. The output
map of this model could localize abnormal patterns, which can
aid experts' visual interpretation as a clinical routine process. Con-
sidering heterogeneous patients in various clinical environments,
our model based on unsupervised learning maybe clinically appli-
cable for evaluating wide-range of brain diseases, even uncom-
mon ones.
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uncommon ones, because it is difficult to collect sufficient data on rare
diseases to train the model [9,10].

We aimed to develop an unsupervised learning-based model which
can be used to identify brain abnormality even in the subjects with
unknown heterogeneous distribution. The model trained by 18F-
fluorodeoxyglucose (FDG) brain PET of cognitively normal aged sub-
jects was applied to identify abnormal patterns of brain metabolism.
We used the data only consisting of brain images of normal subjects
for training. The output of the model, defined as Abnormality Score in
this study, represents how far a given patient's brain'smetabolic pattern
is from the distribution of the normal subjects. To show the applicability
of this model to various disorders in the clinical setting including rela-
tively uncommon diseases, we applied themodel to an independent co-
hort of patients with heterogeneous brain disorders. As this cohort
includes brain disorders showing various brain metabolic patterns
which were unheralded and sometimes had no abnormality on visual
analysis, we investigated whether the model could capture diverse ab-
normal metabolic patterns therein. Furthermore, as the model could
generate a map representing abnormal patterns, we investigated
whether the abnormality pattern map could assist experts' visual inter-
pretation to identify brain abnormalities and their localizations.

2. Materials and methods

2.1. Subjects

A part of the image data of this studywas collected fromAlzheimer's
Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu) data-
base. The ADNI was launched in 2003 as a public-private partnership,
led by Principal InvestigatorMichaelW.Weiner,MD, VAMedical Center
and University of California San Francisco. ADNI included subjects from
over 50 sites across the US and Canada. The main goal of ADNI has been
to develop combined biomarkers by investigating whether serial imag-
ing and biological markers and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment and early Alzheimer's disease. For up-to-date information,
see http://www.adni-info.org. Among FDG PET scans of 393 subjects
of normal controls, 353 scans were used for training the model. The
remained 40 controls were used as a test set for the model to discrimi-
nate abnormal from normal brain.

As abnormal brain data, the model was tested in two different co-
horts. Firstly, the model was tested for the FDG PET scans of ADNI data-
base. FDG PET scans of Alzheimer's disease (n = 243) and mild
cognitive impairment (MCI) (n = 667) patients were used. As normal
subjects, the remaining 40 controls aforementioned were used to eval-
uate the model. The diagnostic classification was determined by ADNI
Clinical Core and used as a ground-truth for further deep learning-
based prediction. Brief demographics of ADNI cohorts are summarized
in Supplementary Table 1.

As an independent dataset from the trainingADNI dataset, FDG brain
PET scans of patients routinely obtained in the clinic were retrospec-
tively collected in a single center. FDG PET scans as a baseline workup
for evaluating the etiology of seizures and behavioral abnormalities
were retrospectively collected. Baseline FDG PET studies of patients
who had structural abnormalities including stroke and tumors were ex-
cluded. To compare the brain PET scans of these patients, adult normal
FDG brain PET scans were also retrospectively collected. The normal
brain PET scans were obtained by subjects who underwent health
screening and had no history of neurologic disorders (Demographics
are summarized in Supplementary Table 2). For ADNI data, the institu-
tional review boards (IRB) of all participating institutions approved im-
aging studies and all participants signed a written informed consent.
The retrospective study for the independent cohort was approved by
IRB of our institute, and informed consent was waived due to the retro-
spective design. All procedures performed in studies involving human
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee andwith the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.

2.2. Study design

We trained a neural network model based on variational
autoencoder (VAE) by normal data to identify abnormal brain metabo-
lism using 353 PET data of normal subjects. FDG PET data and age infor-
mation was encoded into latent features and then a decoder network of
VAE reconstruct the latent features to original FDG PET data. Notably,
age information was included to identify age-dependent FDG PET pat-
terns [11]. The VAE model was trained to minimize an error between
original and reconstructed brain PET images. The model was trained
by a gradient descent algorithm which employs iterative updates of
model parameters. Since VAE uses images themselves as labels, it can
be regarded as a type of self-supervised learning rather than unsuper-
vised learning in terms of precise meaning. The output of the trained
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neural network was Abnormality Score, which represents a degree of
how far a given brain PET is from normal brain PET.

To evaluate the Abnormality Score, the network was first tested to
discriminate AD from normal subjects using the ADNI cohort. For this
test, normal PET data of ADNI (n = 40) different from training data
(n = 353) were used to compare with PET data of AD. Additionally,
themodelwas applied to PET data ofMCI subjects tofind the correlation
between Abnormality Score and a future decline of cognitive scores,
Mini-Mental State Exam (MMSE) and Clinical Dementia Rating Sum of
Boxes (CDR-SB). The network was applied to the independent dataset
which was collected from routine clinical PET studies, brain PET scans
of patients with seizures and behavioral abnormality as clinical routine
data and another normal PET. The application to the independent cohort
was aimed to test the feasibility of deep learning model for heteroge-
neous brain disorders as real-world data as well as the validation of
the model. The Abnormality Score of the independent cohort was com-
pared according to the diagnosis. Detailed methods for image acquisi-
tion, preprocessing and the deep learning model are described in
Supplementary Methods.

2.3. Abnormality score calculation and reconstruction error map

The degree of abnormal patterns in brain metabolism was repre-
sented by the reconstruction error of VAE. The mean reconstruction
error was measured by the average value of mean square errors of
brain voxels. Abnormality Score was the mean reconstruction error of
each subject divided by the mean value of normal subjects' reconstruc-
tion errors.

Reconstruction error map of each subject was obtained by subtrac-
tion of the output of VAE, reconstructed images, from the input PET
images.

2.4. Voxelwise one-sample t-test and distance from a reference brain PET

We compared the Abnormality Score with two conventional
voxelwise analyses to identify abnormality, one-sample t-test and dis-
tance froma reference brain PET. The brain images of the training cohort
were used for estimating voxelwise normal population distribution.
Gaussian smoothing with 10 mm kernel was applied to the images.
Voxelwise t-scores were calculated for a given brain by using the distri-
bution of the normal cohort. The maximum absolute t-score of each
brain was used as the degree of abnormality. As another conventional
method, we generated a reference normal brain PET by voxelwise
mean of training cohort brains. We then measured Euclidean distances
Fig. 1. Abnormality Score of Alzheimer's disease (AD) patients and normal controls. (a) A brief
variational autoencoder model was trained using brain PET images of cognitively normal subjec
distribution shows high reconstruction error. Reconstruction error maps were obtained and
measured for AD patients and controls. (b) Abnormality Score of AD patients was significa
(c) Receiver-operating-characteristic (ROC) curve analysis was performed to differentiate AD
(AUC) was 0.90.
of all brain PET from the reference brain PET to define a conventional
measurement for the abnormality.

2.5. Visual interpretation of brain PET

As performed in the clinical setting, brain PET images of patients
with various disorders were visually reviewed by more than two expe-
rienced nuclear medicine physicians blinded to clinical diagnosis. Ab-
normal metabolic patterns and their location was annotated. To reveal
whether the reconstruction error map could aid visual interpretation,
brain PET images combined with corresponding reconstruction error
maps were additionally reviewed.

2.6. Statistics

Abnormality Score of two different groups was compared by using
Mann Whitney U test. Pearson correlation was performed to test the
correlation between Abnormality Score and future cognitive decline
scores, MMSE and CDR-SB. The decline of cognitive scores was calcu-
lated by 2-year follow-up and baseline exams. The performance of dis-
criminating abnormal brain patterns from normal controls was
evaluated by ROC curves and AUC was calculated. The optimal cutoff
value for Abnormality Score was determined by the point on the ROC
curvewithminimal distance from 100% sensitivity and 100% specificity.
To obtain 95% confidence intervals of ROC AUC, bootstrap resampling
was used (1000 iterations).

3. Results

3.1. A model trained only by normal brain PET scans identified AD patterns

A deep neural network model based on VAE was trained by cogni-
tively normal aged subjects. The inputs of the model were FDG PET
data and age of subjects. The key concept lies in the fact that the
model reconstructs normal brain images similar to training samples
with minimized reconstruction error, while the model shall reconstruct
brain imageswith abnormal patterns far from the distribution of normal
brains with high reconstruction error. The model was sufficiently
trained to reconstruct PET images of normal aged subjects with a mini-
mized loss (Supplementary Fig. 1). We defined ‘Abnormality Score’
using normalized reconstruction error of images defined by the mean
value of mean-squared-errors of brain voxels (Fig. 1a). Abnormality
Score of AD patients was significantly higher than normal controls inde-
pendent of training data (1.93 ± 0.83 vs. 0.99 ± 0.25, p b 1 × 10−15).
The area under curve (AUC) of the ROC curve was 0.90 (95% C.I.
overview of the estimation of abnormality and reconstruction error maps is presented. A
ts. A given brain PET data with abnormal metabolic patterns compared with normal brain
mean errors of brain voxels were defined as Abnormality Score. Abnormality Score was
ntly higher than that of normal controls (1.93 ± 0.83 vs. 0.99 ± 0.25, p b 1 × 10−15).
and controls using Abnormality Score. As a performance parameter, the area under curve
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0.86–0.94) (Fig. 1b, c). As one sample t-test for each brain could identify
conventionally the degree of abnormality using a voxelwise statistical
distribution of normal controls, maximum t-score of each subject was
used as a conventional abnormality score. AUC of the ROC curve esti-
mated by the maximum t-score was 0.78 (95% C.I. 0.71–0.85). A dis-
tance between a given brain PET from the reference brain was used as
another conventional abnormality score. AUC of the ROC curve esti-
mated by the distance from normal reference was 0.80 (95% C.I.
0.73–0.86). The AUCs of conventional abnormality scores were signifi-
cantly lower than the AUC of Abnormality Score (p b 0.05) (Supplemen-
tary Fig. 2).

The voxelwise mean-squared-error map drawn for each subject
showed variable patterns for AD patients (Fig. 2A). Of note, overall
Fig. 2. Reconstruction errormaps of AD patients. The output of themodel, variational autoencod
mean-squared-error. Voxelswith highmean-squared-error represent the location of abnormal p
the whole brain. (a) The reconstruction error maps were drawn for AD patients. Patients show
bilateral parietal cortices and medial frontal cortices. (b) Overall abnormal patterns of AD patie
abnormal patterns obtained by mean of reconstruction error maps of
AD patients included the posterior cingulate cortex, bilateral parietal
cortices and medial frontal cortices (Fig. 2b).

3.2. Correlation between PET abnormality scores and future cognitive de-
cline in MCI patients

We evaluated Abnormality Score for MCI patients to investigate
whether the model could capture the characteristic imaging patterns
in MCI patients with cognitive decline. Abnormality Scores of MCI-
converters were significantly higher than those of MCI-nonconverters
(1.22 ± 0.42 vs 1.07 ± 0.33; U = 1.2 × 10 [4], p b 1 × 10−4) (Fig. 3a).
MMSE changes from baseline to 2-year follow-up were negatively
er, is the reconstructed PET images. The reconstruction errormap is obtained by voxelwise
atterns as voxelwise reconstruction errors represent contributions of Abnormality Score of
ed different patterns of abnormality, which commonly included the posterior cingulate,
nts were generated by the mean image of the reconstruction error maps of AD patients.
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correlated with Abnormality Score at baseline (r = −0.19, p b 1
× 10−4). CDR-SB changes during 2-years were also positively correlated
with Abnormality Score (r = 0.19, p b 1 × 10−4) (Fig. 3b–c).

3.3. Feasibility of application to identifying the PET abnormality in patients
with heterogeneous brain disorders

We applied the model to brain disorders different from dementia:
Baseline brain PET studies for abnormal behavioral symptoms and sei-
zures. These subjects were sampled from the routine cohort of brain
FDG PET examinations requested based on various clinical impressions.
This cohort consisted of cryptogenic epilepsies of heterogeneous etiol-
ogy and also included rare disorders such as autoimmune encephalitis
(Supplementary Table 2). FDG PET images were performed to evaluate
the cause of symptoms and localize the abnormalities. Using our
model trained by normal subjects of the different cohort (i.e. ADNI co-
hort), the Abnormality Scores of PET images were calculated for this
new cohort. The Abnormality Scores of these patients were significantly
higher than those of healthy controls (U = 93.0, p= 0.01). The AUC of
the ROC curve for discriminating symptomatic patients from healthy
controls was 0.74 (95% C.I. 0.58–0.87) (Supplementary Fig. 3). Sensitiv-
ity and specificity were 68.8% and 72.7% when a specific Abnormality
Score value, 0.92,was used as a threshold. The threshold value of Abnor-
mality Score was defined as the point on the ROC curve with minimal
distance from 100% sensitivity and specificity. A conventional one sam-
ple t-test using the normal cohort of ADNI as controls could not differen-
tiate symptomatic patients from normal controls. T-scores of patients
were not significantly different from those of healthy controls (U =
143.0, p = 0.18) and the AUC of the ROC curve was 0.59, which were
not significantly higher than 0.5 (95% C.I. 0.44–0.73) (Supplementary
Fig. 4).

We compared the deep learning model and visual interpretation by
experts for identifying brainmetabolic abnormality. According to the vi-
sual interpretation performed by experts, 12 of 32 PET scans showed ab-
normal metabolic patterns, while abnormal patterns could not be
visually identified in 20 scans. The Abnormality Score of scans visually
abnormal and normal was not significantly different (1.38 ± 1.32 vs.
1.27 ± 0.71, p = n.s) (Table 1). Among 32 scans, the Abnormality
Score of 21 scans were higher than the threshold 0.92 (Supplementary
Table 3).

We further assessed whether the visual interpretation could be
aided by reconstruction error maps. As voxelwise reconstruction errors
represented the location of abnormal patterns, the visual interpretation
could be aided by them. The visually normal PET scans (n = 20) were
Fig. 3. Abnormality Score as a predictive biomarker for predicting future cognitive decline. We
converters and MCI-nonconverters were significantly different. Those of MCI-converters were
evaluated whether Abnormality Score at baseline PET scans predicted the future change of co
Sum of Boxes (CDR-SB) (c). (b) MMSE changes for 2-years were negatively correlated with A
positively correlated with Abnormality Score (r = 0.19, p b 1 × 10−4). Note that red dots repr
visually reassessed with corresponding reconstruction error maps to
find abnormal metabolic patterns. We found that the visual analysis
was helped by the reconstruction error maps to have identified locally
decreasedmetabolism in 12 PET scans (60%, 12/20) (Table 1). In partic-
ular, the epileptogenic zones were localized well with abnormal meta-
bolic patterns in neocortical epilepsy patients and in patients with
autoimmune encephalitis by the reconstruction error maps (Fig. 4),
which had not been visually identified without the reconstruction
maps. Of note, 8 abnormal metabolic patterns further identified by the
reconstruction error maps showed localized abnormality which
corresponded to clinical symptoms of seizures and final diagnosis of
neocortical epilepsies, autoimmune encephalitis and degenerative dis-
orders (Supplementary Table 4).

4. Discussion

One of the key issues in the clinical application of deep learning is to
develop a model that reflect real-world data. Recent deep learning
models particularly focusing on the diagnostic classification have re-
sulted in the remarkable accuracy comparable to experts' visual reading
[12]. A key drawback of thesemodels was the difficulty in application to
patients of the real clinic as some of the disease types and their charac-
teristic patterns of abnormalitieswould not be included in the recogniz-
able features by the training cohort. A theoretically possible solution is
to collect a large dataset which sufficiently covers all types of patients,
however, it can result in several practical issues including harmoniza-
tion, missing data, and class imbalance as well as a huge cost. Our ap-
proach adopting the training using only the normal PET data and
measuring the degree of abnormality of the PET data of interest could
bypass the issues caused by the difference between training datasets
and real-world patients [8]. Furthermore, our approach could be an ex-
ample of a clinically applicable transfer model as it could apply to vari-
ous types of disorders as a clinical routine.

The Abnormality Score could be used as an imaging biomarker by
measuring the degree of abnormality. Considering the correlation be-
tween the Abnormality Score and the future cognitive score change in
MCI patients, it could be used as a predictive marker for cognitive de-
cline. Although this type of prediction was achieved by supervised
learning with higher accuracy [5], the Abnormality Score could not
only apply to patients with cognitive decline but various disorders.
Since there are various disorders in addition to AD and MCI which
show a cognitive problem in the clinical setting, our model has advan-
tages compared with the deep learning models based on supervised
learning which show higher accuracy. Furthermore, considering that
applied our model to brain FDG PET scans of MCI patients. (a) Abnormality Scores of MCI-
significantly higher (1.22 ± 0.42 vs 1.07 ± 0.33; U = 1.2 × 10 [4], p b 1 × 10−4). (b) We
gnitive scores, including Mini-Mental State Exam (MMSE) (B) Clinical Dementia Rating
bnormality Score (r = −0.19, p b 1 × 10−4). (c) CDR-SB changes for 2-years were also
esent MCI-converters and blue dots represent MCI-nonconverters.



Table 1
Visual interpretation results of brain PET of heterogeneous patients as an initial workup
and the results of visual interpretation aided by the reconstruction error map.

Visually abnormal Visually normal

Number of patients 12 20
Diagnosis 8 Temporal lobe

epilepsy
3
Neurodegenerative
1 Motor neuron
disorder

4 Temporal lobe epilepsy
5 Unknown epilepsy
4 Autoimmune encephalitis
2 Neurodegenerative
2 Frontal lobe epilepsy
1 Parietal lobe epilepsy
2 Normal (Psychogenic seizures)

Abnormality score
(Mean ± SD)

1.38 ± 1.32 1.27 ± 0.71

Visual interpretation
aided by reconstruction
error map

60% (12/20) Further identified
suspected abnormality 40%
(8/20) Corresponded to final
diagnosis
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VAE could successfully yield the distribution of variable patterns [11],
we thought that the VAE-based model could represent how far a
given brain PET is from the normal distribution of brain PET. This idea
has been also adapted to anomaly detection for the time-series data
[13,14]. Our approach could localize the abnormal patterns, which
were expected to be an explainablemodel by combining clinical routine
visual interpretation. AsMCI patients show a heterogeneous and clinical
manifestation of dementia could be variable, unsupervised learning
models including our approach might identify the direction of abnor-
malities and eventually discover subtypes of patients with clustering al-
gorithms. It could be another future work which might be achieved by
unsupervised learning on various imaging modalities as well as other
biomarkers. The correlation between the future cognitive decline and
the Abnormality Score was weak compared with previous models
based on supervised learning [5]. It may be a trade-off to the advantage
of the generalized application of our model in heterogeneous patients.
As a future work, by combining the advantages, unsupervised learning
followed by supervised learning as a model transfer may be an effective
method for developing deep learning models with high accuracy for
specific tasks with relatively small samples [15].

An important application of our model is an identification of abnor-
mality in an unrelated group of diseases acquired in other institution
than the original data even including uncommon disorders. Several
Fig. 4. Identification of abnormalmetabolic patterns aided by the reconstruction errormap. (a) B
it showed normal brain metabolism pattern according to the experts' reading. The reconstructi
which corresponded to the clinical symptom, right sidemovement abnormality. (b) Identificatio
epilepsy was aided by the reconstruction error map.
natural image classification models based on ImageNet challenge were
trained by the same number of image data for each label [16]. However,
real-world data, especially in medical fields, include patients' images of
manymutually unrelated uncommon disorders. It also obviates the trial
to collect statistically sufficient data to be fed to the deep learning algo-
rithm. Furthermore, many diagnostic classifications are based on the
complicated clinical presentations including disease progression and
treatment response as well as pathologic diagnosis, which result in het-
erogeneous and uncertain ground-truth labels for medical attributes of
the patients or patients' status data. This complexity in diagnostic clas-
sification and problems of uncommon disorders eventually demands
unsupervised learning.

We showed the feasibility of the application of the VAE-basedmodel
for identifying the abnormality in the independent cohort of heteroge-
neous patients. Though the patients have the variable final diagnosis,
Abnormality Score was significantly higher than controls. Moreover,
our VAE-based model could identify abnormal patterns for localization
of the metabolic abnormality. This localization is clinically important
as it can be used as an assistant for experts' reading and to help the
requesting clinicians' further planning of surgery or therapy [17,18]. In
particular, as the noninvasive localization of the epileptic zone was dif-
ficult for cryptogenic epilepsy patients, we suggest that our VAE-based
model might be a clinically useful tool. Our model can serve as an assis-
tant system for visual interpretation which will enhance the efficiency
and reliability of experts' reading.

As a proof-of-concept study for a clinically applicable deep learning
model, we attempted to develop the general model that covers brain
images of heterogeneous conditions which correspond to the real-
world clinical setting. To prove the model to be applied to various con-
ditions in the clinical setting, the model should be further investigated
in other cohorts recruited in other brain disorders. In terms of the
model architecture and deep learning methods, there is a room for fur-
ther modification. A variant type of generative adversarial networks
was used for anomaly detection in a previous study [19], which resulted
in a good performance for identifying abnormal lesions in optical coher-
ence tomography images. Such a method could be a good candidate for
application to brain images as well, even though training and optimiza-
tion of adversarial networks using 3-dimensional brain image data are
still difficult. Further modification and technical improvements in the
model only using normal brain data may facilitate the clinical applica-
tion of deep learning models that can solve real-world problems.
rain FDGPET image of a patientwith autoimmune encephalitiswas initially interpreted as
on error map highlighted the relatively high reconstruction error in the left frontal cortex,
n of abnormality in the left parietal cortex in brain PET images of patientswith parietal lobe
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5. Conclusions

We introduced a deep learning model trained only by normal brain
PET data to identify abnormal patterns. This unsupervised learning-
based approach has advantages in the flexible application for heteroge-
neous patients, even for uncommondisorders. Given that it is difficult to
collect a sufficiently large brain image dataset that covers all diseases,
especially rare diseases, our approach could be appropriate for real-
world heterogeneous clinical data from various disorders. Furthermore,
we showed that our model could be combined with experts' image in-
terpretation, the current clinical routine, by assisting the identification
and localization of abnormal patterns. We expect that our approach,
which has extensibility to various diseases and may have synergy with
current clinical routine practice, can facilitate the application of deep
learning to nuclear medicine.
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